Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo

Br J Cancer. 2003 Feb 10;88(3):470-7. doi: 10.1038/sj.bjc.6600719.

Abstract

2-(4-Aminophenyl)benzothiazoles represent a potent and highly selective class of antitumour agent. In vitro, sensitive carcinoma cells deplete 2-(4-aminophenyl)benzothiazoles from nutrient media; cytochrome P450 1A1 activity, critical for execution of antitumour activity, and protein expression are powerfully induced. 2-(4-Amino-3-methylphenyl)benzothiazole-derived covalent binding to cytochrome P450 1A1 is reduced by glutathione, suggesting 1A1-dependent production of a reactive electrophilic species. In vitro, 2-(4-aminophenyl)benzothiazole-generated DNA adducts form in sensitive tumour cells only. At concentrations >100 nM, adducts were detected in DNA of MCF-7 cells treated with 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203). 5F 203 (1 microM) led to the formation of one major and a number of minor adducts. However, treatment of cells with 10 microM 5F 203 resulted in the emergence of a new dominant adduct. Adducts accumulated steadily within DNA of MCF-7 cells exposed to 1 microM 5F 203 between 2 and 24 h. Concentrations of the lysylamide prodrug of 5F 203 (Phortress) > or = 100 nM generated adducts in the DNA of sensitive MCF-7 and IGROV-1 ovarian cells. At 1 microM, one major Phortress-derived DNA adduct was detected in these two sensitive phenotypes; 10 microM Phortress led to the emergence of an additional major adduct detected in the DNA of MCF-7 cells. Inherently resistant MDA-MB-435 breast carcinoma cells incurred no DNA damage upon exposure to Phortress (< or = 10 microM, 24 h). In vivo, DNA adducts accumulated within sensitive ovarian IGROV-1 and breast MCF-7 xenografts 24 h after treatment of mice with Phortress (20 mg kg(-1)). Moreover, Phortress-derived DNA adduct generation distinguished sensitive MCF-7 tumours from inherently resistant MDA-MB-435 xenografts implanted in opposite flanks of the same mouse.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Benzothiazoles
  • DNA Adducts / drug effects*
  • Disease Models, Animal
  • Humans
  • Mice
  • Mice, Nude
  • Neoplasm Transplantation
  • Neoplasms, Experimental / drug therapy
  • Thiazoles / pharmacology*
  • Thiazoles / therapeutic use
  • Time Factors
  • Tumor Cells, Cultured

Substances

  • 2-(4-aminophenyl)benzothiazole
  • Antineoplastic Agents
  • Benzothiazoles
  • DNA Adducts
  • Thiazoles