Copper-induced trafficking of the cU-ATPases: a key mechanism for copper homeostasis

Biometals. 2003 Mar;16(1):175-84. doi: 10.1023/a:1020719016675.


The Menkes protein (MNK) and Wilson protein (WND) are transmembrane, CPX-type Cu-ATPases with six metal binding sites (MBSs) in the N-terminal region containing the motif GMXCXXC. In cells cultured in low copper concentration MNK and WND localize to the transGolgi network but in high copper relocalize either to the plasma membrane (MNK) or a vesicular compartment (WND). In this paper we investigate the role of the MBSs in Cu-transport and trafficking. The copper transport activity of MBS mutants of MNK was determined by their ability to complement a strain of Saccharomyces cerevisiae deficient in CCC2 (delta ccc2), the yeast MNK/WND homologue. Mutants (CXXC to SXXS) of MBS1, MBS6, and MBSs1-3 were able to complement delta ccc2 while mutants of MBS4-6, MBS5-6 and all six MBS inactivated the protein. Each of the inactive mutants also failed to display Cu-induced trafficking suggesting a correlation between trafficking and transport activity. A similar correlation was found with mutants of MNK in which various MBSs were deleted, but two constructs with deletion of MBS5-6 were unable to traffic despite retaining 25% of copper transport activity. Chimeras in which the N-terminal MBSs of MNK were replaced with the corresponding MBSs of WND were used to investigate the region of the molecules that is responsible for the difference in Cu-trafficking of MNK and WND. The chimera which included the complete WND N-terminus localized to a vesicular compartment, similar to WND in elevated copper. Deletions of various MBSs of the WND N-terminus in the chimera indicate that a targeting signal in the region of MBS6 directs either WND/MNK or WND to a vesicular compartment of the cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / chemistry
  • Adenosine Triphosphatases / genetics
  • Adenosine Triphosphatases / metabolism*
  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • CHO Cells
  • Cation Transport Proteins / chemistry
  • Cation Transport Proteins / genetics
  • Cation Transport Proteins / metabolism*
  • Copper / metabolism*
  • Copper / pharmacology*
  • Copper-Transporting ATPases
  • Cricetinae
  • Genetic Complementation Test
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Peptide Fragments / chemistry
  • Protein Structure, Secondary
  • Recombinant Fusion Proteins*
  • Sequence Deletion
  • Transfection


  • Cation Transport Proteins
  • Peptide Fragments
  • Recombinant Fusion Proteins
  • Copper
  • Adenosine Triphosphatases
  • ATP7A protein, human
  • Copper-Transporting ATPases