Bradykinin enhancement of PGE2 signalling in bovine trabecular meshwork cells

Exp Eye Res. 2003 Mar;76(3):283-9. doi: 10.1016/s0014-4835(02)00313-5.

Abstract

Kinins and prostaglandins activate signalling pathways in cells of the trabecular meshwork and have opposing effects on outflow resistance to aqueous humor. Consequently, interactions between these pathways may be important in the regulation of intraocular pressure. In the present study, the influence of bradykinin on PGE(2) signalling was examined in primary cultures of bovine trabecular meshwork cells. Incubation of cells with bradykinin produced a concentration-dependent (EC(50)=3.6+/-0.7 nM) elevation of intracellular free Ca(2+). At a maximal concentration of 100 nM, the increase in Ca(2+) was rapid, peaking in 30 sec, and then slowly returned to baseline. This effect was completely inhibited in cells pretreated with the selective B(2) kinin receptor antagonist, Hoe-140. Treatment of trabecular meshwork cells with PGE(2), in comparison, had no effect on cellular Ca(2+) but produced a concentration-dependent increase in adenosine 3', 5'-cyclic monophosphate (cAMP) formation. Bradykinin had no effect on basal cAMP. However, incubation of cells with PGE(2) in combination with bradykinin resulted in a 3- to 5-fold enhancement of PGE(2)-stimulated cAMP production. Bradykinin enhancement of cAMP stimulation was concentration-dependent with an EC(50) of 3.6+/-1.8 nM. Treatment of cells with bradykinin increased the response maximum for PGE(2) signalling, while the EC(50) for PGE(2) was not changed. This action of bradykinin was again blocked in cells pretreated with Hoe-140. Bradykinin also produced a 2- to 3-fold increase in isoproterenol and cholera toxin-stimulated cAMP accumulation. However, when adenylyl cyclase was stimulated directly with forskolin, bradykinin failed to alter cAMP production. These results indicate that bradykinin activates B(2) kinin receptors in trabecular meshwork cells to amplify PGE(2)-stimulated cAMP formation by facilitating the interaction between activated G(s) and the catalytic unit of adenylyl cyclase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bradykinin / pharmacology*
  • Calcium / metabolism
  • Cattle
  • Cells, Cultured
  • Cyclic AMP / biosynthesis
  • Dinoprostone / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Synergism
  • Endothelin-1 / pharmacology
  • Signal Transduction / drug effects
  • Trabecular Meshwork / cytology
  • Trabecular Meshwork / drug effects*
  • Trabecular Meshwork / metabolism

Substances

  • Endothelin-1
  • Cyclic AMP
  • Dinoprostone
  • Bradykinin
  • Calcium