Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Feb 25;42(7):1805-12.
doi: 10.1021/bi027147i.

Implications for RNase L in Prostate Cancer Biology

Affiliations
Review

Implications for RNase L in Prostate Cancer Biology

Robert H Silverman. Biochemistry. .

Abstract

Recently, the interferon (IFN) antiviral pathways and prostate cancer genetics and have surprisingly converged on a single-strand specific, regulated endoribonuclease. Genetics studies from several laboratories in the U.S., Finland, and Israel, support the recent identification of the RNase L gene, RNASEL, as a strong candidate for the long sought after hereditary prostate cancer 1 (HPC1) allele. Results from these studies suggest that mutations in RNASEL predispose men to an increased incidence of prostate cancer, which in some cases reflect more aggressive disease and/or decreased age of onset compared with non-RNASEL linked cases. RNase L is a uniquely regulated endoribonuclease that requires 5'-triphosphorylated, 2',5'-linked oligoadenylates (2-5A) for its activity. The presence of both germline mutations in RNASEL segregating with disease within HPC-affected families and loss of heterozygosity (LOH) in tumor tissues suggest a novel role for the regulated endoribonuclease in the pathogenesis of prostate cancer. The association of mutations in RNASEL with prostate cancer cases further suggests a relationship between innate immunity and tumor suppression. It is proposed here that RNase L functions in counteracting prostate cancer by virtue of its ability to degrade RNA, thus initiating a cellular stress response that leads to apoptosis. This monograph reviews the biochemistry and genetics of RNase L as it relates to the pathobiology of prostate cancer and considers implications for future screening and therapy of this disease.

Similar articles

See all similar articles

Cited by 58 articles

See all "Cited by" articles

MeSH terms

Substances

LinkOut - more resources

Feedback