Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

Neurosci Lett. 2003 Mar 13;339(1):62-6. doi: 10.1016/s0304-3940(02)01423-4.

Abstract

Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR efficiency for the amplicon of interest is constant or even, in the case of the comparative C(t) method, equal to 2. The latter method already leads to a 4-fold error when the PCR efficiencies vary over just a 0.04 range. PCR efficiencies of amplicons are usually calculated from standard curves based on either known RNA inputs or on dilution series of a reference cDNA sample. In this paper we show that the first approach can lead to PCR efficiencies that vary over a 0.2 range, whereas the second approach may be off by 0.26. Therefore, we propose linear regression on the Log(fluorescence) per cycle number data as an assumption-free method to calculate starting concentrations of mRNAs and PCR efficiencies for each sample. A computer program to perform this calculation is available on request (e-mail: bioinfo@amc.uva.nl; subject: LinRegPCR).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • DNA, Complementary / analysis
  • Fluorescent Dyes
  • Linear Models
  • Organic Chemicals*
  • Polymerase Chain Reaction / standards*
  • Polymerase Chain Reaction / statistics & numerical data
  • RNA, Messenger / analysis
  • Time Factors

Substances

  • DNA, Complementary
  • Fluorescent Dyes
  • Organic Chemicals
  • RNA, Messenger
  • SYBR Green I