Dual-modality imaging of cancer with SPECT/CT

Technol Cancer Res Treat. 2002 Dec;1(6):449-58. doi: 10.1177/153303460200100605.

Abstract

Dual-modality imaging is an in vivo diagnostic technique that obtains structural and functional information directly from patient studies in a way that cannot be achieved with separate imaging systems alone. Dual-modality imaging systems are configured by combining computed tomography (CT) with radionuclide imaging (using positron emission tomography (PET) or single-photon emission computed tomography (SPECT)) on a single gantry which allows both functional and structural imaging to be performed during a single imaging session without having the patient leave the imaging system. A SPECT/CT system developed at UCSF is being used in a study to determine if dual-modality imaging offers advantages for assessment of patients with prostate cancer using (111)In-ProstaScint, a radiolabeled antibody for the prostate-specific membrane antigen. (111)In-ProstaScint images are reconstructed using an iterative maximum-likelihood expectation-maximization (ML-EM) algorithm with correction for photon attenuation using a patient-specific map of attenuation coefficients derived from CT. The ML-EM algorithm accounts for the dual-photon nature of the 111In-labeled radionuclide, and incorporates correction for the geometric response of the radionuclide collimator. The radionuclide image then can be coregistered and overlaid in color on a grayscale CT image for improved localization of the functional information from SPECT. Radionuclide images obtained with SPECT/CT and reconstructed using ML-EM with correction for photon attenuation and collimator response improve image quality in comparison to conventional radionuclide images obtained with filtered backprojection reconstruction. These results illustrate the potential advantages of dual-modality imaging for improving the quality and the localization of radionuclide uptake for staging disease, planning treatment, and monitoring therapeutic response in patients with cancer.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Neoplasms / diagnostic imaging*
  • Neoplasms / pathology*
  • Tomography, Emission-Computed, Single-Photon / methods*
  • Tomography, X-Ray Computed / methods*