The question whether information extracted from the electroencephalogram (EEG) of epilepsy patients can be used for the prediction of seizures has recently attracted much attention. Several studies have reported evidence for the existence of a preseizure state that can be detected using different measures derived from the theory of dynamical systems. Most of these studies, however, have neglected to sufficiently investigate the specificity of the observed effects or suffer from other methodological shortcomings. In this paper we present an automated technique for the detection of a preseizure state from EEG recordings using two different measures for synchronization between recording sites, namely, the mean phase coherence as a measure for phase synchronization and the maximum linear cross correlation as a measure for lag synchronization. Based on the observation of characteristic drops in synchronization prior to seizure onset, we used this phenomenon for the characterization of a preseizure state and its distinction from the remaining seizure-free interval. After optimizing our technique on a group of 10 patients with temporal lobe epilepsy we obtained a successful detection of a preseizure state prior to 12 out of 14 analyzed seizures for both measures at a very high specificity as tested on recordings from the seizure-free interval. After checking for in-sample overtraining via cross validation, we applied a surrogate test to validate the observed predictability. Based on our results, we discuss the differences of the two synchronization measures in terms of the dynamics underlying seizure generation in focal epilepsies.