Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 30;278(22):20083-90.
doi: 10.1074/jbc.M301642200. Epub 2003 Mar 14.

Exosome release is regulated by a calcium-dependent mechanism in K562 cells

Affiliations
Free article

Exosome release is regulated by a calcium-dependent mechanism in K562 cells

Ariel Savina et al. J Biol Chem. .
Free article

Abstract

Multivesicular bodies (MVBs) are endocytic structures that contain small vesicles formed by the budding of an endosomal membrane into the lumen of the compartment. Fusion of MVBs with the plasma membrane results in secretion of the small internal vesicles termed exosomes. K562 cells are a hematopoietic cell line that releases exosomes. The application of monensin (MON) generated large MVBs that were labeled with a fluorescent lipid. Exosome release was markedly enhanced by MON treatment, a Na+/H+ exchanger that induces changes in intracellular calcium (Ca2+). To explore the possibility that the effect of MON on exosome release was caused via an increase in Ca2+, we have used a calcium ionophore and a chelator of intracellular Ca2+. Our results indicate that increasing intracellular Ca2+ stimulates exosome secretion. Furthermore, MON-stimulated exosome release was completely eliminated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), implying a requirement for Ca2+ in this process. We have observed that the large MVBs generated in the presence of MON accumulated Ca2+ as determined by labeling with Fluo3-AM, suggesting that intralumenal Ca2+ might play a critical role in the secretory process. Interestingly, our results indicate that transferrin (Tf) stimulated exosome release in a Ca2+-dependent manner, suggesting that Tf might be a physiological stimulus for exosome release in K562 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources