The Universal Ancestor Was a Thermophile or a Hyperthermophile: Tests and Further Evidence

J Theor Biol. 2003 Apr 7;221(3):425-36. doi: 10.1006/jtbi.2003.3197.


The existence of a correlation between the optimal growth temperature of various organisms and a thermophily index (based on the propensity of amino acids to enter more frequently into the proteins of thermophiles/hyperthermophiles) allows inferences to be made on the mesophilic or thermophilic nature of the last universal common ancestor (LUCA). By reconstructing the ancestral sequences of the various ancestors using methods based on maximum likelihood and maximum parsimony, these sequences can be attributed to the mesophiles or (hyper)thermophiles and the following conclusions can be drawn. (1) There is no evidence that the LUCA might have been a mesophile and observations seem to imply that the LUCA was a thermophile or a hyperthermophile; (2) The ancestors of the Archaea and Bacteria domains seem to be (hyper)thermophiles while that of the Eukarya domain turns out to be a mesophile. These conclusions are independent of both (i) where the root is located on the topology of the universal tree (based on that of the small subunit ribosomal RNA) and (ii) the presence of hyperthermophile bacteria near the node of the Bacteria domain ancestor. These conclusions are easier to interpret in the light of the hypotheses that see the origin of life taking place at a high temperature.

MeSH terms

  • Animals
  • Archaea / classification
  • Bacteria / classification
  • Eukaryotic Cells
  • Models, Biological
  • Origin of Life*
  • Thermodynamics