Neural circuitry underlying voluntary suppression of sadness

Biol Psychiatry. 2003 Mar 15;53(6):502-10. doi: 10.1016/s0006-3223(02)01817-6.


Background: The ability to voluntarily self-regulate negative emotion is essential to a healthy psyche. Indeed, a chronic incapacity to suppress negative emotion might be a key factor in the genesis of depression and anxiety. Regarding the neural underpinnings of emotional self-regulation, a recent functional neuroimaging study carried out by our group has revealed that the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex are involved in voluntary suppression of sexual arousal. As few things are known, still, with respect to the neural substrate underlying volitional self-regulation of basic emotions, here we used functional magnetic resonance imaging to identify the neural circuitry associated with the voluntary suppression of sadness.

Methods: Twenty healthy female subjects were scanned during a Sad condition and a Suppression condition. In the Sad condition, subjects were instructed to react normally to sad film excerpts whereas, in the Suppression condition, they were asked to voluntarily suppress any emotional reaction in response to comparable stimuli.

Results: Transient sadness was associated with significant loci of activation in the anterior temporal pole and the midbrain, bilaterally, as well as in the left amygdala, left insula, and right ventrolateral prefrontal cortex (VLPFC) (Brodmann area [BA] 47). Correlational analyses carried out between self-report ratings of sadness and regional blood oxygen level dependent (BOLD) signal changes revealed the existence of positive correlations in the right VLPFC (BA 47), bilaterally, as well as in the left insula and the affective division of the left anterior cingulate gyrus (BA 24/32). In the Suppression condition, significant loci of activation were noted in the right DLPFC (BA 9) and the right orbitofrontal cortex (OFC) (BA 11), and positive correlations were found between the self-report ratings of sadness and BOLD signal changes in the right OFC (BA 11) and right DLPFC (BA 9).

Conclusions: These results confirm the key role played by the DLPFC in emotional self-regulation. They also indicate that the right DLPFC and right OFC are components of a neural circuit implicated in voluntary suppression of sadness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Affect*
  • Brain / anatomy & histology
  • Brain / blood supply
  • Echo-Planar Imaging / instrumentation
  • Electronic Data Processing
  • Female
  • Humans
  • Nerve Net / blood supply*
  • Neural Inhibition / physiology
  • Oxygen / blood
  • Social Control, Informal*


  • Oxygen