Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography

J Mol Evol. 2003 Apr;56(4):464-72. doi: 10.1007/s00239-002-2417-y.


Ostariophysi is the second largest superorder within Teleostei. It contains five orders: Gonorynchiformes, Cypriniformes, Characiformes, Siluriformes, and Gymnotiformes. Resolving the higher-level relationships among ostariophysan and related fishes will aid in resolving basal teleostean divergence and provide basis to historical biogeographic analysis of major freshwater fish groups. In this study, we report the complete mitochondrial (mt) DNA sequences for eleven ostariophysan fishes and the results of phylogenetic analyses including these species plus four other ostariophysan and nine non-ostariophysan teleostean fishes. Maximum likelihood and maximum parsimony analyses reconfirmed clupeiforms as the closest relatives of ostariophysans. However, gonorynchiforms were closer to clupeiforms than to otophysans (ostariophysan groups excluding gonorynchiforms), thus raising a question over the current definition of Ostariophysi. The lack of clarity in otocephalan (ostariophysans + clupeiforms) basal relationships implies that such divergence took place over a short period of time. The monophyly of cypriniforms, characiphysans (characiforms, siluriforms, and gymnotiforms), and orders or superorders outside the ostariophysans examined here were conceivably reconstructed. The phylogenetic hypothesis suggests a Pangean origin of otophysans. Within characiphysans, gymnotiforms and siluriforms have independent evolutionary origins and evolutionary histories comparable to or older than that of characiforms. This helps to explain the present geographic distribution of characiphysans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA, Mitochondrial / genetics*
  • Fishes / classification
  • Fishes / genetics*
  • Geography*
  • Phylogeny*
  • Polymerase Chain Reaction


  • DNA, Mitochondrial