Aggregation of PMe3-stabilized molybdenum sulfides and the catalytic dehydrogenation of H2S

Inorg Chem. 2003 Apr 7;42(7):2410-7. doi: 10.1021/ic026215m.

Abstract

The reactivity of [MoS(4)](2-) (1) toward PMe(3) was explored in the presence and absence of proton donors. Whereas MeCN solutions of (Et(4)N)(2)[MoS(4)] and PMe(3) are stable, in the presence of H(2)S such solutions catalyze formation of H(2) and SPMe(3). Addition of NH(4+) to such solutions afforded MoS(2)(PMe(3))(4) (2), which can be prepared directly from (NH(4))(2)[1]. Compound 2 is reactive toward thiols via a process proposed to involve the initial dissociation of one PMe(3) ligand, a hypothesis supported by the relative inertness of trans-MoS(2)(dmpe)(2). Benzene solutions of 2 react with EtSH to give Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SEt)(3) (3Et). Analogous reactions with thiocresol (MeC(6)H(4)SH) and H(2)S gave Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SR)(3) (R = tol, H). Crystallographic analyses of 3Et, 3H, and 3tol indicate dinuclear species with seven terminal ligands and a Mo(2)(mu-SR)(mu-S) core (r(Mo)(-)(Mo) = 2.748(1) A). From reaction mixtures leading to 3Et from 2, we obtained the intermediate Mo(IV)(2)(mu-S)(2)(SEt)(4)(PMe(3))(2) (4), an edge-shared bis(trigonal pyramidal) structure. Compounds 3H and 3Et react further with H(2)S to give Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) (5H) and Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SEt)(2) (5Et), respectively. Analogously, W(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) was synthesized from a methanol solution of (NH(4))(2)WS(4) with H(2)S and PMe(3). A highly accurate crystallographic analysis of (NH(4))(2)MoS(4) (R(1) = 0.0193) indicates several weak NH.S interactions.