Cation-chloride co-transporters in neuronal communication, development and trauma

Trends Neurosci. 2003 Apr;26(4):199-206. doi: 10.1016/S0166-2236(03)00068-7.

Abstract

Electrical signaling in neurons is based on the operation of plasmalemmal ion pumps and carriers that establish transmembrane ion gradients, and on the operation of ion channels that generate current and voltage responses by dissipating these gradients. Although both voltage- and ligand-gated channels are being extensively studied, the central role of ion pumps and carriers is largely ignored in current neuroscience. Such an information gap is particularly evident with regard to neuronal Cl- regulation, despite its immense importance in the generation of inhibitory synaptic responses by GABA- and glycine-gated anion channels. The cation-chloride co-transporters (CCCs) have been identified as important regulators of neuronal Cl- concentration, and recent work indicates that CCCs play a key role in shaping GABA- and glycine-mediated signaling, influencing not only fast cell-to-cell communication but also various aspects of neuronal development, plasticity and trauma.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cells, Cultured
  • Circadian Rhythm
  • Epilepsy / etiology
  • Epilepsy / metabolism
  • Hippocampus / growth & development
  • Hippocampus / metabolism
  • Humans
  • Ion Transport / physiology*
  • Models, Biological
  • Neurons / metabolism*
  • Symporters / metabolism*
  • Tissue Distribution
  • Wounds and Injuries / metabolism*
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Symporters
  • potassium-chloride symporters
  • gamma-Aminobutyric Acid