Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2003 Apr 17;22(15):2226-35.
doi: 10.1038/sj.onc.1206421.

Pathogenesis of DNA Repair-Deficient Cancers: A Statistical Meta-Analysis of Putative Real Common Target Genes

Affiliations
Meta-Analysis

Pathogenesis of DNA Repair-Deficient Cancers: A Statistical Meta-Analysis of Putative Real Common Target Genes

Stefan M Woerner et al. Oncogene. .

Abstract

DNA mismatch repair deficiency is observed in about 15% of human colorectal, gastric, and endometrial tumors and in lower frequencies in a minority of other tumors thereby causing insertion/deletion mutations at short repetitive sequences, recognized as microsatellite instability (MSI). Evolution of tumors, including those with MSI, is a continuous process of mutation and selection favoring neoplastic growth. Mutations in microsatellite-bearing genes that promote tumor cell growth in general (Real Common Target genes) are assumed to be the driving force during MSI carcinogenesis. Thus, microsatellite mutations in these genes should occur more frequently than mutations in microsatellite genes without contribution to malignancy (ByStander genes). So far, only a few Real Common Target genes have been identified by functional studies. Thus, comprehensive analysis of microsatellite mutations will provide important clues to the understanding of MSI-driven carcinogenesis. Here, we evaluated published mutation frequencies on 194 repeat tracts in 137 genes in MSI-H colorectal, endometrial, and gastric carcinomas and propose a statistical model that aims to identify Real Common Target genes. According to our model nine genes including BAX and TGFbetaRII were identified as Real Common Targets in colorectal cancer, one gene in gastric cancer, and three genes in endometrial cancer. Microsatellite mutations in five additional genes seem to be counterselected in gastrointestinal tumors. Overall, the general applicability, the capacity to unlimited data analysis, the inclusion of mutation data generated by different groups on different sets of tumors make this model a useful tool for predicting Real Common Target genes with specificity for MSI-H tumors of different organs, guiding subsequent functional studies to the most likely targets among numerous microsatellite harboring genes.

Comment in

Similar articles

See all similar articles

Cited by 44 articles

See all "Cited by" articles

Publication types

Feedback