Thin films of Ag nanoparticles prepared from the reduction of AgI nanoparticles in self-assembled films

J Colloid Interface Sci. 2002 Nov 1;255(1):115-8. doi: 10.1006/jcis.2002.8615.

Abstract

A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in the composite film were reduced by NaBH(4), which resulted in the formation of a thin film of Ag nanoparticles. UV-visible spectra and X-ray photoelectron spectroscopy data confirmed the transformation from AgI to Ag. Atomic force microscopy (AFM) showed that the formed Ag nanoparticles distributed on the film homogeneously. Surface-enhanced Raman spectroscopy (SERS) measurement indicated that the prepared thin films could be used as effective SERS substrates. The reduction process was also carried out by UV light at selective surface regions, which resulted in the formation of patterned nanoparticle arrays.