Inbreeding depression in fecundity and inbred line extinction in the bulb mite, Rhizoglyphus robini

Heredity (Edinb). 2003 May;90(5):371-6. doi: 10.1038/sj.hdy.6800254.


This study investigated the magnitude of inbreeding depression in fecundity, and whether the depression is purged during six generations of sib mating in the bulb mite, Rhizoglyphus robini. The progeny resulting from a single generation of brother-sister mating suffered significant inbreeding depression in fecundity. During the following six generations of continuous sib-mating, 58% lines were lost, 45% because of sterility and 13% because of preadult mortality. The lines were then outcrossed, and their inbreeding depression compared with that of the base population. The inbreeding depression for the outcrossed population was 0.15, and for the base population 0.19, but the difference was not significant. The lack of significant purging of inbreeding depression indicates that it was caused either by detrimental genes of small effect, or by the breaking down of overdominant relations between alleles. However, the large proportion of extinct lines points to the former mechanism as a predominant cause of inbreeding depression. Theory predicts that the probability of line extinction with inbreeding increases with its load of mutations. If phenotypic variation in fecundity was partly because of differences in numbers of mutations carried by individuals, the fecundity of the line founder could be expected to correlate with the probability that the line derived from it will survive long-term inbreeding. Indeed, fecundity of founder females was significantly associated with line survival, which suggests that line extinction rate may be used as a method to study individual mutational loads, for example, in studies of sexual selection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Female
  • Fertility
  • Inbreeding*
  • Male
  • Mites / genetics*