The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism

Curr Biol. 2003 Apr 29;13(9):790-5. doi: 10.1016/s0960-9822(03)00250-1.

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that are between 21 and 25 nucleotides in length and repress gene function through interactions with target mRNAs. The genomes of metazoans encode on the order of several hundred miRNAs, but the processes they regulate have been defined for only two in C. elegans. We searched for new inhibitors of apoptotic cell death by testing existing collections of P element insertion lines for their ability to enhance a small-eye phenotype associated with eye-specific expression of the Drosophila cell death activator Reaper. Here we report the identification of the Drosophila miRNA mir-14 as a cell death suppressor. Loss of mir-14 enhances Reaper-dependent cell death, whereas ectopic expression suppresses cell death induced by multiple stimuli. Animals lacking mir-14 are viable. However, they are stress sensitive and have a reduced lifespan. Mir-14 mutants have elevated levels of the apoptotic effector caspase Drice, suggesting one potential site of action. Mir-14 also regulates fat metabolism. Deletion of mir-14 results in animals with increased levels of triacylglycerol and diacylglycerol, whereas increases in mir-14 copy number have the converse effect. We discuss possible relationships between these phenotypes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Death / physiology*
  • Chromosome Mapping
  • Drosophila / anatomy & histology
  • Drosophila / genetics
  • Drosophila / metabolism*
  • Gene Expression Regulation*
  • Lipid Metabolism*
  • MicroRNAs / metabolism*

Substances

  • MicroRNAs