A salvage pathway for protein structures: tmRNA and trans-translation

Annu Rev Microbiol. 2003;57:101-23. doi: 10.1146/annurev.micro.57.030502.090945. Epub 2003 May 1.

Abstract

Transfer-messenger RNA (tmRNA, or SsrA), found in all eubacteria, has both transfer and messenger RNA activity. Relieving ribosome stalling by a process called trans-translation, tmRNAala enters the ribosome and adds its aminoacylated alanine to the nascent polypeptide. The original mRNA is released and tmRNA becomes the template for translation of a 10-amino-acid tag that signals for proteolytic degradation. Although essential in a few bacterial species, tmRNA is nonessential in Escherichia coli and many other bacteria. Proteins known to be associated with tmRNA include SmpB, ribosomal protein S1, RNase R, and phosphoribosyl pyrophosphate. SmpB, having no other known function, is essential for tmRNA activity. trans-translation operates within ribosomes stalled both at the end of truncated mRNAs and at rare codons and some natural termination sites. Both the release of stalled ribosomes and the subsequent degradation of tagged proteins are important consequences of trans-translation.

Publication types

  • Review

MeSH terms

  • Codon / metabolism
  • Endopeptidases / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / biosynthesis
  • Escherichia coli Proteins / genetics
  • Protein Biosynthesis* / physiology*
  • Proteins / genetics
  • RNA, Bacterial / metabolism*
  • Ribosomes / metabolism*

Substances

  • Codon
  • Escherichia coli Proteins
  • Proteins
  • RNA, Bacterial
  • tmRNA
  • Endopeptidases