Nanometer stepping drives of surface acoustic wave motor

IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Apr;50(4):376-85. doi: 10.1109/tuffc.2003.1197960.

Abstract

High resolution (from nanometer to subnanometer) stepping drives of a surface acoustic wave motor are presented. It was shown that step displacement was easily controlled by adjusting a number of driving waves, using a steel ball slider equipped with permanent magnet for preload. By means of this open loop control, the step displacement was controlled from centimeter-order to submicrometer-order. In this paper, using a silicon slider equipped with a ball bearing linear guide, the stepping motions of a surface acoustic wave motor were investigated. A laser interferometer equipped with a 2-picometer resolution displacement demodulator was introduced. Motions of the slider ranging from several hundreds of nanometers to several nanometers in each step displacement were observed. Reduction of the driving waves down to 25 cycles, under a 100 Vpeak driving voltage and a 30 N preload condition, generated about 2 nm stepping motion using our experimental setup under an open loop condition. We also demonstrated subnanometer step movements. These experimental results indicated that the surface acoustic wave motor has an ability of subnanometer positioning with a centimeter-level stroke.