Cytochrome P450 (CYP) drug metabolising enzymes CYP1A1 and CYP1B1 are regulated through the ligand-activated aryl hydrocarbon (Ah) receptor. Differential expression of CYP1A1 and CYP1B1 mRNA and protein has previously been reported in human tissues with the presence of the message often extrapolated to indicate the presence of protein. The aim of this study was to clarify these potentially misleading findings, by analysing components of the Ah receptor pathway (CYP1B1, CYP1A1, Ah receptor and ARNT) using a combination of quantitative real-time RT-PCR and immunoblotting. Three human cell lines (MOG-G-CCM, MCF7 and HEPG2) known to differentially express CYP1A1 and CYP1B1 mRNA and protein were exposed to the Ah receptor agonist 3-MC, and basal and inducible levels of CYP1A1, CYP1B1, Ah receptor and ARNT were determined. The key finding of this study was the demonstration of equivalent levels of CYP1B1 mRNA in both the treated and untreated MOG-G-CCM cell lines, with expression of the corresponding CYP1B1 protein only after exposure to an Ah receptor agonist. This finding suggests that a post-transcriptional mechanism is involved in the regulation of CYP1B1. In addition, the expression pattern of CYP1B1 mRNA and protein in the MOG-G-CCM cells highlights this cell line as a potential model for studying CYP1B1 expression in human tissue.