The transient receptor potential (TRP) superfamily is subdivided into four main classes of cation channels, TRPC, TRPV, TRPM and TRPN, each of which includes members in worms, flies, mice and humans. While the biophysical features of many of the mammalian channels have been described, relatively little is known concerning the biological roles of these channels. Forward genetic screens in Drosophila melanogaster and Caenorhabditis elegans have led to the identification of the founding members of each of these four subfamilies. Moreover, phenotypic analyses of invertebrate mutants have contributed greatly to our understanding of the roles of TRP proteins. A recurring theme is that many of these proteins function in sensory signaling processes ranging from vision to olfaction, osmosensation, light touch, social feeding, and temperature- and mechanically-induced nociception. In addition, at least one invertebrate TRP protein is required for cell division. As many of these functions may be conserved among the mammalian TRPs, the invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo.