Effects of Parasitism by the Braconid Wasp Cotesia congregata on Metabolic Rate in Host Larvae of the Tobacco Hornworm, Manduca sexta

J Insect Physiol. 1997 Feb 21;43(2):143-154. doi: 10.1016/s0022-1910(96)00090-x.

Abstract

We examined growth rates, gas exchange patterns and energy metabolism of tobacco hornworm (Manduca sexta) larvae parasitized by the braconid wasp Cotesia congragata. Larvae parasitized at the beginning of the fourth-instar had reduced growth compared to unparasitized larvae of the same age and short-term differences in metabolism (measured as rates of CO(2) production, Vdot; CO(2)) were apparent almost immediately after wasp oviposition. However, over the growth period between parasitization and the last part of the fifth-instar, there was no significant difference between parasitized and unparasitized hosts as seen in the relationship between mass and Vdot; CO(2). One day prior to parasitoid emergence, host larvae stopped eating, ceased spontaneous locomotor activity and showed a dramatic decline in metabolism. The 60% decline of Vdot; CO(2) at this time is consistent with lack of specific dynamic action because the animals were not feeding. Gas exchange became highly cyclical on the day of parasitoid emergence, but the cause and significance of this phenomenon, which disappeared by the third day following emergence, are not clear. This pattern of cycling was not induced by starving nonparasitized larvae for 6days, nor by immobilizing nonparasitized larvae with tetrodotoxin. Ecdysteroid levels in the host's hemolymph significantly increased on the day when parasitoids completed their L2-L3 molt and began emerging, but not during the wasps' L1-L2 molt which occurred a few days earlier. Contrary to our initial expectation that hemolymph ecdysteroid titers might be linked to alterations in the host's metabolic rate, we observed no such correlation.