Phase angle correlates with n-3 fatty acids and cholesterol in red cells of Nigerian children with sickle cell disease

Lipids Health Dis. 2003 May 6:2:2. doi: 10.1186/1476-511x-2-2.

Abstract

Objective: To determine the cholesterol content and fatty acid composition of red cell membrane phospholipids (PL) of children with sickle cell disease (SCD) and to correlate these levels with whole body phase angle that is related to the integrity and function of cell membranes.

Study design: Blood samples were obtained from 69 children with SCD and 72 healthy age- and gender-matched controls in Nigeria for the determination of the cholesterol content and proportions of fatty acids in red cell PL. Bioelectrical impedance analysis was used to obtain resistance (R) and reactance (Xc) from which phase angle was calculated as arctan Xc/R. Cholesterol (normalized to lipid phosphorus) and the proportions of individual fatty acids were correlated with phase angle.

Results: The proportions of palmitic (p < 0.001), stearic acid (p = 0.003) and cholesterol (p < 0.001) were significantly higher in the red cells of children with SCD, whereas the proportions of arachidonic acid and docosahexaenoic acid were reduced (p = 0.03 and < 0.001, respectively) compared to controls. The phase angle was inversely correlated with the proportions of palmitic acid (p = 0.03) and oleic acid (p < 0.001) and cholesterol (p = 0.003). Three n-3 polyunsaturated fatty acids-eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid- were positively correlated with phase angle (p < 0.001).

Conclusions: The fatty acid composition and cholesterol content of tissue membranes in SCD correlate with the phase shift measured by bioelectrical impedance analysis. Phase angle measurements may provide a non-invasive method for monitoring interventions aimed at altering the lipid composition of membranes.