Effect of insulin upon membrane-bound (Na+ + K+)-ATPase extracted from frog skeletal muscle

J Physiol. 1975 Oct;252(1):43-58. doi: 10.1113/jphysiol.1975.sp011133.


1. Insulin stimulates the activity of membrane-bound ATPase isolated from frog skeletal muscle and from rat brain. The increase in activity of the membrane-bound ATPase system isolated from frog ranged from 9-8 to 53% at concentrations of Na+ (25 mM), K+ (10 mM), and ATP (2 mM) similar to those in in vivo experiments conducted previously (Moore, 1973). The increased activity of the membrane-bound ATPase is, therefore, at least as great as the insulin-induced increase in Na efflux (10-38%) from intact cells (Moore, 1973). If the concentration of Na+ is lowered to 4 mM and that of ATP lowered to 0-5 mM albumin, and 10(6) M, the increase in ouabain-inhibitable ATPase activity can reach as high as 400%. 2. Ouabain, at a concentration (10(-3) M) sufficient to inhibit stimulation of the frog ATPase by increasing Na from 4 to 25 mM, completely blocked the stimulation of ATPase activity due to insulin. 3. At 2 mM-ATP, 100 mM-Na+, and 20 mM-K+, conditions which maximally activate the (Na+ + K+)-ATPase, insulin did not increase the ATPase, activity. Stimulation was consistently seen at 10 mM-K+, 0-5 mM-ATP, and either 4 mM or 25 mM-Na+. 4. The finding that insulin does not stimulate the ATPase activity in conditions in which the (Na+ + K+)-ATPase component is maximally activated and especially the fact that ouabain can reproducibly inhibit insulin stimulation of the membrane-bound ATPase activity strongly suggest that interaction of insulin with its receptor upon the plasma membrane somehow stimulates the (Na+ + K+)-ATPase system (ouabain sensitive; ATP phosphohydrolase, EC ( These results are consistent with previous studies of the effect of insulin upon Na efflux from intact cells (Moore, 1973) and support the previous conclusion that the component of Na efflux stimulated by insulin is active. The evidence suggests that insulin probably does not affect Vmax of the (Na+ + K+)-ATPase system, but may increase the affinity of the enzyme system to one or more effectors, most likely Na+, ATP, and perhaps K+. 5. Oxidized glutathione (2-7 X 10(-6) M), 10(-6) M, 10(-7) M, and 10(-8) M cyclic AMP did not affect the ATPase activity 10(-6)Malbumin, and . 6. The results are consistent with the view that the Na pump, (Na+ + K+)-ATPase, is intimately involved with the physiological action of insulin and may be transducer between the binding of insulin to its receptor on the plasma membrane and the cellular actions of insulin.

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Adenosine Triphosphate / physiology
  • Animals
  • Anura
  • Cell Membrane / enzymology
  • Insulin / pharmacology*
  • Insulin / physiology
  • Muscles / drug effects
  • Muscles / enzymology*
  • Ouabain / pharmacology
  • Potassium / physiology
  • Rana pipiens
  • Sodium / physiology
  • Stimulation, Chemical


  • Insulin
  • Ouabain
  • Adenosine Triphosphate
  • Sodium
  • Adenosine Triphosphatases
  • Potassium