Measurement for the dose-rates of the cosmic-ray components on the ground

J Radiat Res. 2002 Dec;43 Suppl:S27-33. doi: 10.1269/jrr.43.s27.


In this study, we aimed to measure the directly ionizing component (muons and photons) and the indirectly ionizing component (neutrons) of the cosmic-ray spectra and evaluate their dose rate contribution to the total dose rate on a ground level in Japan. Measurements were carried out in Tohoku University, Japan, from October 2000. The pulse-height spectra of the cosmic-ray photons and muons were measured with a 12.7 cm diameter and 12.7 cm long NaI(Tl) scintillation detector. In order to measure energy spectra of cosmic-ray photons and muons, response functions of the detector to photons and muons were determined by the Monte Carlo simulation codes. The cosmic-ray photon dose was evaluated directly from the measured pulse-height spectrum by using the spectrum weight function, and the cosmic-ray muon dose was evaluated by converting the measured pulse height spectrum into deposited energy within the detector. The quantity of the cosmic-ray electrons is estimated to be very small and is not taken into account in this study. The cosmic-ray neutron spectrum and the neutron dose were measured by using a multi-moderator spectrometer (Bonner ball) and a rem counter. The measurements could finally give the annual absorbed dose in tissue of the cosmic-ray muons of 315 microSv/y and annual ambient doses of the cosmic-ray photons and neutrons on the ground in Japan of 55 microSv/y and 31 microSv/y, respectively.

MeSH terms

  • Background Radiation*
  • Cosmic Radiation*
  • Japan
  • Mesons
  • Neutrons
  • Photons
  • Radiometry*