Activin, a member of the transforming growth factor superfamily, is upregulated in a number of inflammatory episodes such as septicemia and rheumatoid arthritis. In the CNS, activin has been predominantly assessed in terms of a neuroprotective role. In this report we characterized the activin response in the CNS in a rabbit model of meningitis. In normal animals, cerebrospinal fluid (CSF) activin levels were higher than those in serum, indicating an intracranial secretion of this cytokine. Following intracisternal inoculation with Streptococcus pneumoniae, activin in CSF was unchanged for the first 12 h and then rose progressively; levels were increased approximately 15-fold within 24 h. Activin levels were correlated positively with CSF protein content and with the number of apoptotic neurons in the dentate gyrus. No apparent correlation was observed between CSF activin concentrations and bacterial titer, lactate concentrations or leukocyte density. Using immunohistochemistry, activin staining was localized to epithelial cells of the choroid plexus, cortical neurons and the CA3 region of the hippocampus, with similar staining intensities in both normal and meningitic brains. However, in meningitic brains there was also strong staining in activated microglia and infiltrating macrophages. Taken together, these results demonstrate that activin forms part of the CNS response to immune challenge and may be an important mediator to modulate inflammatory processes in the brain.