Water at DNA surfaces: ultrafast dynamics in minor groove recognition

Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8113-8. doi: 10.1073/pnas.1433066100. Epub 2003 Jun 18.

Abstract

Water molecules at the surface of DNA are critical to its equilibrium structure, DNA-protein function, and DNA-ligand recognition. Here we report direct probing of the dynamics of hydration, with femtosecond resolution, at the surface of a DNA dodecamer duplex whose native structure remains unperturbed on recognition in minor groove binding with the bisbenzimide drug (Hoechst 33258). By following the temporal evolution of fluorescence, we observed two well separated hydration times, 1.4 and 19 ps, whereas in bulk water the same drug is hydrated with time constants of 0.2 and 1.2 ps. For comparison, we also studied calf thymus DNA for which the hydration exhibits similar time scales to that of dodecamer DNA. However, the time-resolved polarization anisotropy is very different for the two types of DNA and clearly elucidates the rigidity in drug binding and difference in DNA rotational motions. These results demonstrate that hydration at the surface of the groove is a dynamical process with two general types of trajectories; the slowest of them (approximately 20 ps) are those describing dynamically ordered water. Because of their ultrafast time scale, the "ordered" water molecules are the most weakly bound and are accordingly involved in the entropic (hydration/dehydration) process of recognition.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anti-Infective Agents / chemistry
  • Binding Sites
  • Bisbenzimidazole / chemistry
  • Cattle
  • Crystallography, X-Ray
  • DNA / chemistry*
  • Fluorescent Dyes / chemistry
  • Hydrogen Bonding
  • Models, Molecular
  • Nucleic Acid Conformation
  • Spectrometry, Fluorescence
  • Water / chemistry*

Substances

  • Anti-Infective Agents
  • Fluorescent Dyes
  • Water
  • DNA
  • Bisbenzimidazole