High-frequency gene transfer from the chloroplast genome to the nucleus
- PMID: 12817081
- PMCID: PMC166398
- DOI: 10.1073/pnas.1430924100
High-frequency gene transfer from the chloroplast genome to the nucleus
Abstract
Eukaryotic cells arose through endosymbiotic uptake of free-living bacteria followed by massive gene transfer from the genome of the endosymbiont to the host nuclear genome. Because this gene transfer took place over a time scale of hundreds of millions of years, direct observation and analysis of primary transfer events has remained difficult. Hence, very little is known about the evolutionary frequency of gene transfer events, the size of transferred genome fragments, the molecular mechanisms of the transfer process, or the environmental conditions favoring its occurrence. We describe here a genetic system based on transgenic chloroplasts carrying a nuclear selectable marker gene that allows the efficient selection of plants with a nuclear genome that carries pieces transferred from the chloroplast genome. We can select such gene transfer events from a surprisingly small population of plant cells, indicating that the escape of genetic material from the chloroplast to the nuclear genome occurs much more frequently than generally believed and thus may contribute significantly to intraspecific and intraorganismic genetic variation.
Figures
Comment in
-
Gene transfer from organelles to the nucleus: frequent and in big chunks.Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8612-4. doi: 10.1073/pnas.1633606100. Epub 2003 Jul 14. Proc Natl Acad Sci U S A. 2003. PMID: 12861078 Free PMC article. Review. No abstract available.
Similar articles
-
Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer.Annu Rev Genet. 2017 Nov 27;51:1-22. doi: 10.1146/annurev-genet-120215-035329. Epub 2017 Aug 28. Annu Rev Genet. 2017. PMID: 28846455 Review.
-
Direct measurement of the transfer rate of chloroplast DNA into the nucleus.Nature. 2003 Mar 6;422(6927):72-6. doi: 10.1038/nature01435. Epub 2003 Feb 5. Nature. 2003. PMID: 12594458
-
Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco.Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9710-5. doi: 10.1073/pnas.0400853101. Epub 2004 Jun 21. Proc Natl Acad Sci U S A. 2004. PMID: 15210980 Free PMC article.
-
Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution.Plant Physiol. 2011 Dec;157(4):2181-93. doi: 10.1104/pp.111.185074. Epub 2011 Oct 27. Plant Physiol. 2011. PMID: 22034627 Free PMC article.
-
Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants?Ann Bot. 2009 Feb;103(4):625-33. doi: 10.1093/aob/mcn173. Epub 2008 Sep 18. Ann Bot. 2009. PMID: 18801916 Free PMC article. Review.
Cited by
-
Distinguish Dianthus species or varieties based on chloroplast genomes.Open Life Sci. 2023 Nov 28;18(1):20220772. doi: 10.1515/biol-2022-0772. eCollection 2023. Open Life Sci. 2023. PMID: 38035046 Free PMC article.
-
Putting DNA methylation in context: from genomes to gene expression in plants.Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):149-156. doi: 10.1016/j.bbagrm.2016.08.009. Epub 2016 Aug 30. Biochim Biophys Acta Gene Regul Mech. 2017. PMID: 27590871 Free PMC article. Review.
-
The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective.Curr Genet. 2004 Sep;46(3):123-39. doi: 10.1007/s00294-004-0522-8. Epub 2004 Aug 6. Curr Genet. 2004. PMID: 15300404 Review.
-
In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons.Chromosoma. 2005 Jul;114(2):103-17. doi: 10.1007/s00412-005-0342-8. Epub 2005 Jun 17. Chromosoma. 2005. PMID: 15965704
-
Targeted introduction of heritable point mutations into the plant mitochondrial genome.Nat Plants. 2022 Mar;8(3):245-256. doi: 10.1038/s41477-022-01108-y. Epub 2022 Mar 17. Nat Plants. 2022. PMID: 35301443 Free PMC article.
References
-
- Gray, M. W. (1993) Curr. Opin. Genet. Dev. 3, 884–890. - PubMed
-
- Martin, W. & Müller, M. (1998) Nature 392, 37–41. - PubMed
-
- Race, H., Herrmann, R. G. & Martin, W. (1999) Trends Genet. 15, 364–370. - PubMed
-
- Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M. & Kowallik, K. V. (1998) Nature 393, 162–165. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
