DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells

Biochem Pharmacol. 2003 Jul 15;66(2):225-37. doi: 10.1016/s0006-2952(03)00260-0.

Abstract

Platinum anticancer drugs, such as cisplatin, are thought to exert their activity by DNA damage. Oxaliplatin, a clinically active diaminocyclohexane platinum compound, however, requires fewer DNA-Pt adducts than cisplatin to achieve cell growth inhibition. Here we investigated whether secondary DNA damage and apoptotic responses to oxaliplatin compensate for the reduced formation of DNA adducts. Oxaliplatin treatment of leukemic CEM and ovarian A2780 cancer cells resulted in early (4 hr) induction of DNA single-strand breaks measured by nucleoid sedimentation. These infrequent early lesions progress with time into massive double-stranded DNA fragmentation (fragments >50k bp) paralleled by characteristic apoptotic changes revealed by cell morphology and multivariate flow cytometry. Profound oxaliplatin-induced apoptotic DNA fragmentation was detectable following a 24 hr treatment of A2780 and CEM cells with 2 and 10 microM oxaliplatin, respectively. This DNA fragmentation was inhibited completely by the broad-spectrum caspase inhibitor Z-VAD-fmk. Cisplatin, which forms markedly more DNA-Pt adducts in CEM and A2780 cells than equimolar oxaliplatin, was similarly potent as oxaliplatin in terms of early strand breaks and later apoptotic responses. Oxaliplatin was also profoundly apoptotic in several other tumor cell lines of prostate origin but had only a marginal effect in normal prostate PrEC cells. Collectively, the results demonstrate that, relative to the magnitude of the primary DNA-Pt lesions, oxaliplatin is disproportionately more potent than cisplatin in the induction of apoptosis. Apoptosis induction, possibly enhanced by a contribution of targets other than DNA, seems to be an important factor in the mechanism of action of oxaliplatin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis*
  • Cisplatin / pharmacology*
  • DNA Damage*
  • DNA, Neoplasm / drug effects
  • DNA, Neoplasm / metabolism
  • Humans
  • Organoplatinum Compounds / pharmacology*
  • Oxaliplatin
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • DNA, Neoplasm
  • Organoplatinum Compounds
  • Oxaliplatin
  • Cisplatin