Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun;45(3):219-29.
doi: 10.1046/j.1524-4725.2003.690.x.

Morphological asymmetry in dividing retinal progenitor cells

Affiliations
Comparative Study

Morphological asymmetry in dividing retinal progenitor cells

Kanako Saito et al. Dev Growth Differ. 2003 Jun.

Abstract

For the understanding of histogenetic events in the 3-D retinal neuroepithelium, direct observation of the progenitor cells and their morphological changes is required. A slice culture method has been developed by which the behavior of single progenitor cells can be monitored. Although it has been believed that each retinal progenitor cell loses its basal process while it is in M phase, it is reported here that the process is retained throughout M phase and is inherited by one daughter cell, which can be a neuron or a progenitor cell. Daughter neurons used an inherited process for neuronal translocation and positioning. In divisions that produced two mitotic daughters, both of which subsequently divided to form four granddaughter cells, only one daughter cell inherited the original basal process while the other extended a new process. Interestingly, behavioral differences were often noted between such mitotic sisters in the trajectory of interkinetic nuclear movement, cell cycle length, and the composition of the granddaughter pair. Therefore, "symmetric" (progenitor --> progenitor + progenitor) divisions are in fact morphologically asymmetric, and the behavior of the mitotic daughters can often be asymmetric, indicating the necessity for studying possible associations between the process inheritance and the cell fate choice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources