Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo

Biophys J. 2003 Jul;85(1):637-45. doi: 10.1016/s0006-3495(03)74507-x.


High-resolution near-wall fluorescent microparticle image velocimetry (micro-PIV) was used in mouse cremaster muscle venules in vivo to measure velocity profiles in the red cell-depleted plasma layer near the endothelial lining. micro-PIV data of the instantaneous translational speeds and radial positions of fluorescently labeled microspheres (0.47 microm) in an optical section through the midsagittal plane of each vessel were used to determine fluid particle translational speeds. Regression of a linear velocity distribution based on near-wall fluid-particle speeds consistently revealed a negative intercept when extrapolated to the vessel wall. Based on a detailed three-dimensional analysis of the local fluid dynamics, we estimate a mean effective thickness of approximately 0.33 micro m for an impermeable endothelial surface layer or approximately 0.44 micro m assuming the lowest hydraulic resistivity of the layer that is consistent with the observed particle motions. The extent of plasma flow retardation through the layer required to be consistent with our micro-PIV data results in near complete attenuation of fluid shear stress on the endothelial-cell surface. These findings confirm the presence of a hydrodynamically effective endothelial surface layer, and emphasize the need to revise previous concepts of leukocyte adhesion, stress transmission to vascular endothelium, permeability, and mechanotransduction mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Flow Velocity / physiology*
  • Blood Flow Velocity / radiation effects
  • Endothelium, Vascular / cytology*
  • Endothelium, Vascular / physiology*
  • Endothelium, Vascular / radiation effects
  • Erythrocytes / cytology
  • Erythrocytes / physiology*
  • Erythrocytes / radiation effects
  • Hemorheology / instrumentation
  • Hemorheology / methods
  • Light
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microscopy, Fluorescence, Multiphoton / methods*
  • Muscle, Skeletal / blood supply
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / physiology
  • Rheology / methods*
  • Shear Strength
  • Surface Properties
  • Vascular Resistance / physiology
  • Vascular Resistance / radiation effects
  • Venules / cytology*
  • Venules / physiopathology*
  • Venules / radiation effects