Effects of continuous exposure to digoxin on MDR1 function and expression in Caco-2 cells

J Pharm Pharmacol. 2003 May;55(5):675-81. doi: 10.1211/002235703765344595.

Abstract

The Caco-2 cell line has been used widely for studying intestinal permeability and several transport functions, and express the multidrug resistance transporter MDR1/P-glycoprotein. Previously, the transient exposure to digoxin for 24 h was found to induce MDR1 mRNA in Caco-2 cells. Here, a digoxin-tolerant Caco-2 subline (Caco/DX) was newly established by the continuous exposure of Caco-2 cells to digoxin, and the effects of continuous exposure to digoxin on MDR1 were examined. The 50% growth inhibitory concentration (IC(50)) values for digoxin in Caco-2 and Caco/DX cells were 17.2 and 81.4 nM, respectively. The IC(50) values for paclitaxel, an MDR1 substrate, were 1.0 and 547 nM, respectively, whereas the cytotoxicity of 5-fluorouracil was comparable in both cells. The uptake and efflux of Rhodamine123, an MDR1 substrate, in Caco/DX cells were significantly less and greater, respectively, than those in Caco-2 cells, and these transports were affected by the addition of ciclosporin. The expression of MDR1 mRNA in Caco/DX cells was approximately 2- and 1.7-fold compared with Caco-2 cells and Caco-2 cells treated with 100 nM digoxin for 24 h, respectively. On the other hand, MRP1 mRNA in Caco/DX cells was unchanged. These observations confirmed that the continuous exposure to digoxin, as well as the transient exposure, induced MDR1 in Caco-2 cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / biosynthesis*
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • Caco-2 Cells / drug effects*
  • Caco-2 Cells / metabolism
  • Digoxin / administration & dosage*
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation / drug effects*
  • Gene Expression Regulation / physiology
  • Growth Inhibitors / administration & dosage
  • Humans
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Growth Inhibitors
  • RNA, Messenger
  • Digoxin