Bone marrow of adults contains a subtype of progenitor cells that have the capacity to differentiate into mature endothelial cells and have therefore been termed endothelial progenitor cells (EPCs). Of the three cell markers (CD133, CD34, and the vascular endothelial growth factor receptor 2) that characterize the early functional EPCs, located predominantly in the bone marrow, EPCs obviously lose CD133/CD34 and start to express CD31, vascular endothelial cadherin, and von Willebrand factor when migrating to the circulation. Various isolation procedures of EPCs from different sources by using adherence culture or magnetic microbeads have been described, but published findings with regard to the number of EPCs in the peripheral circulation of healthy adults are scanty and no data regarding the lifetime of EPCs in vivo exist. Clinical studies employing EPCs for neovascularization of ischemic organs have just been started; however, the mechanisms stimulating or inhibiting the differentiation of bone marrow-derived EPCs in vivo and the signals causing their adhesion, migration, and homing to sites of injured tissue are largely unknown at present.