Oxidant insults can lead to apoptotic and nonapoptotic cell death. Lung epithelial cells exposed to high levels of oxygen do not die via apoptosis, but through a much slower, morphologically distinct process involving cell and nuclear swelling. In contrast, H2O2 induces a rapid apoptotic cell death. We first assessed the effect of oxidant exposure on activator protein-1 (c-Jun and Fos) and c-Jun N-terminal kinase (JNK) regulation in MLE12 cells. Both oxidants induced c-Jun and Fos expression, albeit with a different pattern of regulation-hyperoxia (95% O2) induced a biphasic response, whereas H2O2 (500 microM) induced a sustained response. We then examined the role of JNK by Western blot, JNK activity assay, and a pull-down assay and observed an identical pattern of regulation. To assess whether JNK functions in a pro-death or pro-survival capacity, we generated stable cell lines that constitutively express a dominant-negative mutation of JNK resulting in significant inhibition of JNK activity. Inhibition of the JNK pathway in this manner prevented hyperoxic and H2O2-induced cell death. These results demonstrate that hyperoxic cell death is pathway-driven and that both modes of death involve the JNK signaling pathway.