In vitro generation of suppressor cell activity: suppression of in vitro induction if cell-mediated cytotoxicity

J Immunol. 1976 Jan;116(1):167-77.

Abstract

It was observed that when normal mouse spleen cells were cultured alone in vitro (precultured) for 3 to 7 days, these cells lost the ability to generate cell-mediated cytotoxicity (CML) during subsequent in vitro sensitization with allogeneic spleen cells, trinitrophenyl (TNP)-modified syngeneic spleen cells, or syngeneic tumor cells. These precultured cells, which were themselves unable to generate CML, were also shown in mixing experiments to suppress, actively, the generation of CML by freshly explanted spleen cells. Suppression occurred at the sensitization phase of CML, and not at the effector level; supernatants from suppressive precultured cells were not suppressive. Suppression was totally abrogated by the treatment of spleen cells with a T cell-specific rabbit anti-mouse brain serum and complement (RalphaMB+C) either before or after preculturing, suggesting that a T cell eas essential both to the generation of suppressor activity and to its expression. Suppressor activity was entirely absent in precultured nylon wool column-nonadherent spleen cells, a T cell-enriched population containing most of the RalphaMB+C-sensitive cells in the spleen. Precultured nylon column-adherent cells (T cell-depleted) did have suppressive activity, and a mixture of nylon-adherent and nylon-non-adherent cells was a suppressive after preculture as the precultured unseparated spleen. Moreover, the ability of nylon-adherent spleen cells to generate suppressive activity during preculturing was abrogated by treatment with RalphaMB+C. Thus, the "spontaneous" generation of CML-suppressive activity was dependent upon a limited subpopulation of splenic T cells isolated in the nylon column-adherent fraction. The relationship of these data to a previously described synergy between subpopulations of normal spleen in the generation of CML is discussed, and the findings related to other suppressor systems described in the literature.

MeSH terms

  • Animals
  • Cytotoxicity Tests, Immunologic
  • Immunity, Cellular*
  • Immunosuppression Therapy*
  • In Vitro Techniques
  • Lymphocyte Culture Test, Mixed
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Spleen / immunology