Bubbles: a unifying framework for low-level statistical properties of natural image sequences
- PMID: 12868630
- DOI: 10.1364/josaa.20.001237
Bubbles: a unifying framework for low-level statistical properties of natural image sequences
Abstract
Recently, different models of the statistical structure of natural images have been proposed. These models predict properties of biological visual systems and can be used as priors in Bayesian inference. The fundamental model is independent component analysis, which can be estimated by maximization of the sparsenesses of linear filter outputs. This leads to the emergence of principal simple cell properties. Alternatively, simple cell properties are obtained by maximizing the temporal coherence in natural image sequences. Taking account of the basic dependencies of linear filter outputs permit modeling of complex cells and topographic organization as well. We propose a unifying framework for these statistical properties, based on the concept of spatiotemporal activity "bubbles."A bubble means here an activation of simple cells (linear filters) that is contiguous both in space (the cortical surface) and in time.
Similar articles
-
Quadratic forms in natural images.Network. 2003 Nov;14(4):765-88. Network. 2003. PMID: 14653502
-
Vision as Bayesian inference: analysis by synthesis?Trends Cogn Sci. 2006 Jul;10(7):301-8. doi: 10.1016/j.tics.2006.05.002. Epub 2006 Jun 19. Trends Cogn Sci. 2006. PMID: 16784882
-
Quantifying Visual Image Quality: A Bayesian View.Annu Rev Vis Sci. 2021 Sep 15;7:437-464. doi: 10.1146/annurev-vision-100419-120301. Epub 2021 Aug 4. Annu Rev Vis Sci. 2021. PMID: 34348034 Review.
-
Statistical models of natural images and cortical visual representation.Top Cogn Sci. 2010 Apr;2(2):251-64. doi: 10.1111/j.1756-8765.2009.01057.x. Epub 2009 Nov 4. Top Cogn Sci. 2010. PMID: 25163788
-
Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey.IEEE Trans Cybern. 2013 Dec;43(6):1607-24. doi: 10.1109/TSMCC.2012.2230254. IEEE Trans Cybern. 2013. PMID: 23757593 Review.
Cited by
-
Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics.PLoS Comput Biol. 2012;8(3):e1002405. doi: 10.1371/journal.pcbi.1002405. Epub 2012 Mar 1. PLoS Comput Biol. 2012. PMID: 22396635 Free PMC article.
-
Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures.IEEE Trans Pattern Anal Mach Intell. 2009 Apr;31(4):693-706. doi: 10.1109/TPAMI.2008.107. IEEE Trans Pattern Anal Mach Intell. 2009. PMID: 19229084 Free PMC article.
-
Sensory cortex is optimized for prediction of future input.Elife. 2018 Jun 18;7:e31557. doi: 10.7554/eLife.31557. Elife. 2018. PMID: 29911971 Free PMC article.
-
Slowness and sparseness have diverging effects on complex cell learning.PLoS Comput Biol. 2014 Mar 6;10(3):e1003468. doi: 10.1371/journal.pcbi.1003468. eCollection 2014 Mar. PLoS Comput Biol. 2014. PMID: 24603197 Free PMC article.
-
Soft mixer assignment in a hierarchical generative model of natural scene statistics.Neural Comput. 2006 Nov;18(11):2680-718. doi: 10.1162/neco.2006.18.11.2680. Neural Comput. 2006. PMID: 16999575 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
