Src family kinases in tumor progression and metastasis

Cancer Metastasis Rev. 2003 Dec;22(4):337-58. doi: 10.1023/a:1023772912750.


The Src family of non-receptor protein tyrosine kinases plays critical roles in a variety of cellular signal transduction pathways, regulating such diverse processes as cell division, motility, adhesion, angiogenesis, and survival. Constitutively activated variants of Src family kinases, including the viral oncoproteins v-Src and v-Yes, are capable of inducing malignant transformation of a variety of cell types. Src family kinases, most notably although not exclusively c-Src, are frequently overexpressed and/or aberrantly activated in a variety of epithelial and non-epithelial cancers. Activation is very common in colorectal and breast cancers, and somewhat less frequent in melanomas, ovarian cancer, gastric cancer, head and neck cancers, pancreatic cancer, lung cancer, brain cancers, and blood cancers. Further, the extent of increased Src family activity often correlates with malignant potential and patient survival. Activation of Src family kinases in human cancers may occur through a variety of mechanisms and is frequently a critical event in tumor progression. Exactly how Src family kinases contribute to individual tumors remains to be defined completely, however they appear to be important for multiple aspects of tumor progression, including proliferation, disruption of cell/cell contacts, migration, invasiveness, resistance to apoptosis, and angiogenesis. This review details the evidence for Src family activation in human tumors, and emphasizes possible consequences to tumor progression. Given the ability of Src and its family members to participate in so many aspects of tumor progression and metastasis, Src family kinases are attractive targets for future anti-cancer therapeutics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Disease Progression
  • Enzyme Activation
  • Humans
  • Neoplasm Metastasis
  • Neoplasms / enzymology*
  • Neoplasms / pathology*
  • Neovascularization, Pathologic
  • Signal Transduction
  • src-Family Kinases / metabolism


  • src-Family Kinases