All-digital image capture and whole-field analysis of ciliary beat frequency

J Microsc. 2003 Aug;211(Pt 2):103-11. doi: 10.1046/j.1365-2818.2003.01209.x.


We hypothesized that a high-speed all-digital video imaging system, with computerized analysis, would precisely capture and measure ciliary beat frequency (CBF) and would shorten the time from data capture to data analysis. We compared a conventional analog video system with a new high-speed digital system we developed for CBF analysis. Using ciliated primary bovine bronchial epithelial cells we made simultaneous analog and digital CBF measurements of the same region of interest (ROI) while temperature was varied. This yielded nearly identical data over a wide range of frequencies (7-15 Hz) using either system. Unlike the digital system however, the analog system did not accurately detect CBF above 15 Hz (temperatures higher than 30 degrees C). We also compared ROI analysis with a new analysis algorithm we have named whole-field analysis (WFA). WFA measurement of CBF agreed with ROI and reduced operator time required to analyse data by more than 90% compared with the analog system. We conclude that all-digital computerized CBF analysis correlates closely with standard video methods, markedly speeds up data analysis and provides new ways, including WFA, to analyse entire fields of motile cilia simultaneously. We have termed this system 'Sisson-Ammons Video Analysis' (SAVA).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bronchi / cytology*
  • Cattle
  • Cilia / physiology*
  • Cilia / ultrastructure*
  • Epithelial Cells / physiology
  • Image Processing, Computer-Assisted / methods*
  • Microscopy, Video
  • Video Recording