Particle selection for laser-accelerated proton therapy feasibility study

Med Phys. 2003 Jul;30(7):1660-70. doi: 10.1118/1.1586268.

Abstract

In this paper we present calculations for the design of a particle selection system for laser-accelerated proton therapy. Laser-accelerated protons coming from a thin high-density foil have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Our solution to this problem is a compact particle selection and collimation device that delivers small pencil beams of protons with desired energy spectra. We propose a spectrometer-like particle selection and beam modulation system in which the magnetic field will be used to spread the protons spatially according to their energies and emitting angles. Subsequently, an aperture will be used to select the protons within a therapeutic window of energy (energy modulation). It will be shown that for the effective proton spatial differentiation, the primary collimation device should be used, which will collimate protons to the desired angular distribution and limit the spatial mixing of different energy protons once they have traveled through the magnetic system. Due to the angular proton distribution, the spatial mixing of protons of different energies will always be present and it will result in a proton energy spread with the width depending on the energy. For 250 MeV protons, the width (from the maximum to the minimum energy) is found to be 50 MeV for the magnetic field configuration used in our calculations. As the proton energy decreases, its energy width decreases as well, and for 80 MeV protons it equals 9 MeV. The presence of the energy width in the proton energy distribution will modify the depth dose curves needed for the energy modulation calculation. The matching magnetic field setup will ensure the refocusing of the selected protons and the final beam will be collimated by the secondary collimator. The calculations presented in this article show that the dose rate that the selection system can yield is on the order of D=260 Gy/min for a field size of 1 x 1 cm2.

Publication types

  • Evaluation Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Equipment Design / methods*
  • Equipment Failure Analysis / methods*
  • Feasibility Studies
  • Laser Therapy*
  • Linear Energy Transfer*
  • Proton Therapy*
  • Radiometry / methods*
  • Radiotherapy / instrumentation*
  • Radiotherapy / methods
  • Radiotherapy Dosage*
  • Radiotherapy Planning, Computer-Assisted / methods
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity

Substances

  • Protons