Robust, automatic spike sorting using mixtures of multivariate t-distributions
- PMID: 12906941
- DOI: 10.1016/s0165-0270(03)00120-1
Robust, automatic spike sorting using mixtures of multivariate t-distributions
Abstract
A number of recent methods developed for automatic classification of multiunit neural activity rely on a Gaussian model of the variability of individual waveforms and the statistical methods of Gaussian mixture decomposition. Recent evidence has shown that the Gaussian model does not accurately capture the multivariate statistics of the waveform samples' distribution. We present further data demonstrating non-Gaussian statistics, and show that the multivariate t-distribution, a wide-tailed family of distributions, provides a significantly better fit to the true statistics. We introduce an adaptation of a new expectation-maximization based competitive mixture decomposition algorithm and show that it efficiently and reliably performs mixture decomposition of t-distributions. Our algorithm determines the number of units in multiunit neural recordings, even in the presence of significant noise contamination resulting from random threshold crossings and overlapping spikes.
Similar articles
-
To sort or not to sort: the impact of spike-sorting on neural decoding performance.J Neural Eng. 2014 Oct;11(5):056005. doi: 10.1088/1741-2560/11/5/056005. Epub 2014 Aug 1. J Neural Eng. 2014. PMID: 25082508 Free PMC article.
-
Automated spike sorting using density grid contour clustering and subtractive waveform decomposition.J Neurosci Methods. 2007 Aug 15;164(1):1-18. doi: 10.1016/j.jneumeth.2007.03.025. Epub 2007 Apr 12. J Neurosci Methods. 2007. PMID: 17512603 Free PMC article.
-
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.BMC Neurosci. 2012 Aug 8;13:96. doi: 10.1186/1471-2202-13-96. BMC Neurosci. 2012. PMID: 22871125 Free PMC article.
-
Modeling neural activity with cumulative damage distributions.Biol Cybern. 2015 Oct;109(4-5):421-33. doi: 10.1007/s00422-015-0651-9. Epub 2015 May 22. Biol Cybern. 2015. PMID: 25998210 Review.
-
The shape of neural dependence.Neural Comput. 2004 Apr;16(4):665-72. doi: 10.1162/089976604322860659. Neural Comput. 2004. PMID: 15025825 Review.
Cited by
-
Neural encoding schemes of tactile information in afferent activity of the vibrissal system.J Comput Neurosci. 2013 Feb;34(1):89-101. doi: 10.1007/s10827-012-0408-6. Epub 2012 Jun 22. J Comput Neurosci. 2013. PMID: 22723154
-
Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex.Neuron. 2020 Nov 11;108(3):551-567.e8. doi: 10.1016/j.neuron.2020.07.021. Epub 2020 Aug 17. Neuron. 2020. PMID: 32810433 Free PMC article.
-
A Stochastic Dynamic Operator Framework That Improves the Precision of Analysis and Prediction Relative to the Classical Spike-Triggered Average Method, Extending the Toolkit.eNeuro. 2024 Nov 8;11(11):ENEURO.0512-23.2024. doi: 10.1523/ENEURO.0512-23.2024. Print 2024 Nov. eNeuro. 2024. PMID: 39375031 Free PMC article.
-
Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex.J Neurosci. 2009 Dec 16;29(50):15780-95. doi: 10.1523/JNEUROSCI.2305-09.2009. J Neurosci. 2009. PMID: 20016094 Free PMC article.
-
Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats.J Neurophysiol. 2011 Mar;105(3):1011-22. doi: 10.1152/jn.00523.2010. Epub 2010 Nov 17. J Neurophysiol. 2011. PMID: 21084683 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
