Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 24;278(43):41768-78.
doi: 10.1074/jbc.M308196200. Epub 2003 Aug 7.

The mechanism of p21-activated kinase 2 autoactivation

Affiliations
Free article

The mechanism of p21-activated kinase 2 autoactivation

Hao Wu et al. J Biol Chem. .
Free article

Abstract

The p21-activated kinases (PAKs) play an important role in diverse cellular processes. PAK2 is activated by autophosphorylation upon binding of small G proteins such as Cdc42 and Rac in the GTP-bound state. However, the mechanism of PAK2 autophosphorylation in vitro is unclear. In the present study, the kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the autoactivation of PAK2. On the basis of the kinetic equation of the substrate reaction during the autophosphorylation of PAK2, the activation rate constants for the free enzyme and enzyme-substrate complex have been determined. The results indicate that 1) in the presence of Cdc42, PAK2 autophosphorylation is a bipartite mechanism, with the regulatory domain autophosphorylated at multiple residues, whereas activation coincides with autophosphorylation of the catalytic domain at Thr-402; 2) the autophosphorylation reactions in regulatory domain are either a nonlimiting step or not required for activation of enzyme; 3) the autophosphorylation at site Thr-402 on the catalytic domain occurs by an intermolecular mechanism and is required for phosphorylation of exogenous substrates examined; 4) binding of the exogenous protein/peptide substrates at the active site of PAK2 has little or no effect on the autoactivation of PAK2, suggesting that multiple regions of PAK2 are involved in the enzyme-substrate recognition. The present method also provides a novel approach for studying autophosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanisms of the reversible phosphorylation reaction toward certain enzymes are being assessed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources