High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae)

Theor Appl Genet. 2003 Nov;107(7):1201-7. doi: 10.1007/s00122-003-1370-5. Epub 2003 Aug 8.


The objectives of the present study were to develop microsatellite markers for the wild strawberry, Fragaria virginiana, to evaluate segregation patterns of microsatellite alleles in this octoploid species, and assess genetic variability at microsatellite loci in a wild population. A genomic library was screened for microsatellite repeats and several PCR primers were designed and tested. We also tested the use of heterologous primers and found that F. virginiana primers amplified products in cultivated strawberry, Fragaria x ananassa Duch. and Fragaria chiloensis. Similarly, microsatellite loci developed from cultivated strawberry also successfully amplified F. virginiana loci. We investigated four microsatellite loci in detail, three developed from F. virginiana and one from cultivated strawberry. A survey of 100 individuals from a population of F. virginiana in Pennsylvania demonstrated high heterozygosities (H(e) or gene diversity ranged from 0.80 to 0.88 per locus) and allelic diversity (12-17 alleles per locus), but individual plants had no more than two alleles per locus. Segregation patterns in parents and progeny of two controlled crosses at these four loci were consistent with disomic Mendelian inheritance. Together these findings suggest that the genome of F. virginiana is "highly diploidized" and at least a subset of microsatellite loci can be treated as codominant, diploid markers. Significant heterozygote deficiencies were found at three of the four loci for hermaphroditic individuals but for only one locus among females in this gynodioecious species.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles
  • Chromosome Segregation*
  • Chromosomes, Plant / genetics*
  • Crosses, Genetic
  • DNA Primers
  • Fragaria / genetics*
  • Genome, Plant
  • Genomic Library
  • Microsatellite Repeats*
  • Ploidies*
  • Polymerase Chain Reaction


  • DNA Primers