DC3, the smallest subunit of the Chlamydomonas flagellar outer dynein arm-docking complex, is a redox-sensitive calcium-binding protein

J Biol Chem. 2003 Oct 24;278(43):42652-9. doi: 10.1074/jbc.M303064200. Epub 2003 Aug 14.

Abstract

The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four EF-hands (Casey, D. M., Inaba, K., Pazour, G. J., Takada, S., Wakabayashi, K., Wilkerson, C. G., Kamiya, R., and Witman, G. B. (2003) Mol. Biol. Cell 14, 3650-3663). Two of the EF-hands fit the consensus pattern for calcium binding, and one of these contains two cysteine residues within its binding loop. To determine whether the predicted EF-hands are functional, we purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of dithiothreitol and Mg2+. The protein bound one calcium ion with an affinity (Kd) of approximately 1 x 10-5 m. Calcium binding was observed only in the presence of dithiothreitol and thus is redox-sensitive. DC3 also bound Mg2+ at physiological concentrations but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium binding activity of the bacterially expressed protein. To investigate the role of the EF-hands in vivo, we transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the Glu to Gln mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains unknown.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Substitution
  • Animals
  • Calcium / metabolism
  • Calcium-Binding Proteins / chemistry
  • Calcium-Binding Proteins / metabolism
  • Calcium-Binding Proteins / physiology*
  • Chlamydomonas / chemistry*
  • Chlamydomonas / physiology
  • Dyneins / chemistry
  • Dyneins / metabolism
  • Dyneins / physiology*
  • Flagella / chemistry
  • Flagella / physiology
  • Magnesium / metabolism
  • Mutagenesis, Site-Directed
  • Oxidation-Reduction
  • Protein Subunits / genetics
  • Protein Subunits / metabolism
  • Protein Subunits / physiology*
  • Protozoan Proteins / chemistry
  • Protozoan Proteins / metabolism
  • Protozoan Proteins / physiology
  • Swimming

Substances

  • Calcium-Binding Proteins
  • Protein Subunits
  • Protozoan Proteins
  • Dyneins
  • Magnesium
  • Calcium