Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato

Theor Appl Genet. 2003 Nov;107(8):1391-401. doi: 10.1007/s00122-003-1384-z. Epub 2003 Aug 16.


The goal of the present experiments was to transfer the chromosomes of Solanum sitiens (syn. Solanum rickii) into cultivated tomato ( Lycopersicon esculentum). By crossing an allotetraploid L. esculentum x Solanum sitiens hybrid to sesquidiploid L. esculentum x S. lycopersicoides, a trigenomic hybrid (2n+14=38) was obtained. Analysis of the latter by GISH (genomic in situ hybridization) indicated it contained a full set of 12 S. sitiens chromosomes, plus two extras from S. lycopersicoides. This and other complex hybrids were pollinated with Lycopersicon pennellii-derived bridging lines to overcome unilateral incompatibility. A total of 40 progeny were recovered by embryo rescue, including diploids and aneuploids (up to 2n+8). In order to determine the origin of chromosomes and the location of introgressed segments, progeny were genotyped with RFLP markers. S. sitiens-specific markers on all chromosomes, except 6 and 11, were detected in the progeny. Several S. sitiens chromosomes were transmitted intact, either through chromosome addition (i.e., trisomics) or substitution (i.e., disomics). Recombination between S. sitiens and L. esculentum was detected on most chromosomes, in both diploid and aneuploid progeny. A monosomic alien addition line for S. sitiens chromosome 8 was identified, and the extra chromosome was stably transmitted to approximately 13% of the backcross progeny. This study demonstrates the feasibility of gene transfer from S. sitiens to L. esculentum through chromosome addition, substitution, and recombination in the progeny of complex aneuploid hybrids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosomes, Plant*
  • Culture Techniques
  • Lycopersicon esculentum / genetics*
  • Ploidies
  • Recombination, Genetic*
  • Solanum / genetics*
  • Solanum / physiology