Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D
- PMID: 12924935
- DOI: 10.1021/bi034684+
Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D
Abstract
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C[double bond]N, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.
Similar articles
-
The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.Biochemistry. 2006 Dec 26;45(51):15624-32. doi: 10.1021/bi061970n. Epub 2006 Dec 1. Biochemistry. 2006. PMID: 17176084
-
Formation of Meta III during the decay of activated rhodopsin proceeds via Meta I and not via Meta II.Biochemistry. 2004 Jul 27;43(29):9457-66. doi: 10.1021/bi049337u. Biochemistry. 2004. PMID: 15260488
-
Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin.Phys Chem Chem Phys. 2007 Apr 14;9(14):1648-58. doi: 10.1039/b616365c. Epub 2007 Jan 10. Phys Chem Chem Phys. 2007. PMID: 17396175 Review.
-
Activity switches of rhodopsin.Photochem Photobiol. 2008 Jul-Aug;84(4):911-20. doi: 10.1111/j.1751-1097.2008.00324.x. Epub 2008 Apr 18. Photochem Photobiol. 2008. PMID: 18422873 Review.
-
Photoreactions of metarhodopsin III.Biochemistry. 2004 Aug 10;43(31):10255-64. doi: 10.1021/bi049182q. Biochemistry. 2004. PMID: 15287753
Cited by
-
6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin.J Am Chem Soc. 2009 Oct 28;131(42):15160-9. doi: 10.1021/ja9034768. J Am Chem Soc. 2009. PMID: 19795853 Free PMC article.
-
Electron crystallography reveals the structure of metarhodopsin I.EMBO J. 2004 Sep 15;23(18):3609-20. doi: 10.1038/sj.emboj.7600374. Epub 2004 Aug 26. EMBO J. 2004. PMID: 15329674 Free PMC article.
-
The form and function of channelrhodopsin.Science. 2017 Sep 15;357(6356):eaan5544. doi: 10.1126/science.aan5544. Science. 2017. PMID: 28912215 Free PMC article. Review.
-
Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways.Front Mol Biosci. 2017 Dec 12;4:85. doi: 10.3389/fmolb.2017.00085. eCollection 2017. Front Mol Biosci. 2017. PMID: 29312953 Free PMC article.
-
Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I.J Phys Chem B. 2012 Sep 6;116(35):10477-89. doi: 10.1021/jp3019183. Epub 2012 May 17. J Phys Chem B. 2012. PMID: 22564141 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
