Dendritic cell (DC) based cancer vaccine can induce potent antitumor immunity in murine models; however, objective clinical responses have been observed only in a minority of cancer patients. To improve the antitumor effect of DC vaccine, Th1-biasing cytokine interleukin (IL) 18 and melanoma-associated antigen gp100 were cotransfected into bone marrow-derived DC (IL-18/gp100-DC), which were used as vaccine to induce the protective and therapeutic immunity in a B16 melanoma model. Immunization with IL-18/gp100-DC resulted in tumor resistance in 87.5% of the mice challenged with B16 cells; however, 12.5% and 25% of mice immunized with gp100 gene-modified DC (gp100-DC) or IL-18 gene-modified DC (IL-18-DC) were tumor free, respectively. Most importantly, IL-18/gp100-DC immunization led to the generation of potent therapeutic immunity that significantly inhibited the tumor growth and improved the survival period of mice bearing established melanoma. Immune cell depletion experiments identified that CD4(+) T cells also played an important role in the priming phase of antitumor immunity and CD8(+) T lymphocytes were the primary effectors. gp100-specific CTL response were induced most markedly in the tumor-bearing mice immunized with IL-18/gp100-DC. Administration with such vaccine also significantly increased the production of Th1 cytokine (IL-2 and interferon-gamma) and induced infiltration of inflammatory cells inside and around the tumors. In addition, natural killer cell activity was also augmented. These results indicate that immunization with DC vaccine coexpressing Th1 cytokine IL-18 and tumor antigen gene may be an effective strategy for a successful therapeutic vaccination.