Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 7;278(45):44657-66.
doi: 10.1074/jbc.M307351200. Epub 2003 Aug 25.

A reduction in intestinal cell pHi due to loss of the Caenorhabditis elegans Na+/H+ exchanger NHX-2 increases life span

Affiliations
Free article

A reduction in intestinal cell pHi due to loss of the Caenorhabditis elegans Na+/H+ exchanger NHX-2 increases life span

Keith Nehrke. J Biol Chem. .
Free article

Abstract

Na+/H+ exchangers are involved in cell volume regulation, fluid secretion and absorption, and pH homeostasis. NHX-2 is a Caenorhabditis elegans Na+/H+ exchanger expressed exclusively at the apical membrane of intestinal epithelial cells. The inactivation of various intestinal nutrient transport proteins has been shown previously to influence aging via metabolic potential and a mechanism resembling caloric restriction. We report here a functional coupling of NHX-2 activity with nutrient uptake that results in long lived worms. Gene inactivation of nhx-2 by RNAi led to a loss of fat stores in the intestine and a 40% increase in longevity. The NHX-2 protein was coincidentally expressed with OPT-2, an oligopeptide transporter that is driven by a transmembrane proton gradient and that is also known to be involved in fat accumulation. Gene inactivation of opt-2 led to a phenotype resembling that of nhx-2, although not as severe. In order to explore this potential functional interaction, we combined RNA interference with a genetically encoded, fluorescence-based reagent to measure intestinal intracellular pH (pHi) in live worms under physiological conditions. Our results suggest first that OPT-2 is the main dipeptide uptake pathway in the nematode intestine, and second that dipeptide uptake results in intestinal cell acidification, and finally that recovery following dipeptide-induced acidification is normally a function of NHX-2. The loss of NHX-2 protein results in decreased steady-state intestinal cell pHi, and we hypothesize that this change perturbs proton-coupled nutrient uptake processes such as performed by OPT-2. Our data demonstrate a functional role for a Na+/H+ exchanger in nutrient absorption in vivo and lays the groundwork for examining integrated acid-base physiology in a non-mammalian model organism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources