A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract

J Comp Neurol. 2003 Oct 13;465(2):168-78. doi: 10.1002/cne.10843.


The mushroom bodies of the honeybee are important neuropils for learning and memory. Therefore, knowledge about their input and output connections is essential to understanding how these neuropils function. A newly described input tract to the mushroom body is presented here, which is called the subesophageal-calycal tract (SCT) and connects the subesophageal ganglion with the calyces of the mushroom bodies. The neuronal somata of the SCT neurons lie in one cluster between the lobula of the optic lobe and a neuropil area that is formed from the fusion of the tritocerebrum and the subesophageal ganglion. Within the subesophageal ganglion, the dendritic fibers of SCT neurons overlap with terminals of sensory neurons from the proboscis. Therefore, we conclude that the SCT neurons might process gustatory and mechanosensory information from the proboscis. Individual SCT neurons receive unilateral input within the subesophageal ganglion and may connect to either the ipsilateral or the contralateral mushroom body. On their way to the mushroom bodies, the SCT neuron axons meet the roots of the antennocerebralis tracts (ACTs) and from this point follow the same path as the median ACT neurons for a short distance. Within the calyces, the SCT neurons innervate two separate areas, a small area within the dorsal collar just below the lip and a part of the basal ring. Double-labeling experiments show that the projections of the SCT neurons do not overlap with the projections of the olfactory projection neurons and visual projection neurons from the dorsal medulla. The possible function of the SCT neurons and the relation of the SCT to known input tracts of the mushroom bodies in other insects are discussed.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees / anatomy & histology*
  • Brain / anatomy & histology*
  • Dextrans
  • Image Processing, Computer-Assisted
  • Mechanotransduction, Cellular / physiology
  • Microscopy, Confocal
  • Mushroom Bodies / innervation*
  • Neurons, Afferent / ultrastructure*
  • Rhodamines
  • Sense Organs / innervation*
  • Species Specificity
  • Taste / physiology


  • Dextrans
  • Rhodamines
  • rhodamine dextran