Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change

Biochem J. 2003 Nov 1;375(Pt 3):531-8. doi: 10.1042/BJ20031229.

Abstract

Protein kinase B (PKB/Akt) is a key regulator of cell growth, proliferation and metabolism. It possesses an N-terminal pleckstrin homology (PH) domain that interacts with equal affinity with the second messengers PtdIns(3,4,5)P3 and PtdIns(3,4)P2, generated through insulin and growth factor-mediated activation of phosphoinositide 3-kinase (PI3K). The binding of PKB to PtdIns(3,4,5)P3/PtdIns(3,4)P2 recruits PKB from the cytosol to the plasma membrane and is also thought to induce a conformational change that converts PKB into a substrate that can be activated by the phosphoinositide-dependent kinase 1 (PDK1). In this study we describe two high-resolution crystal structures of the PH domain of PKBalpha in a noncomplexed form and compare this to a new atomic resolution (0.98 A, where 1 A=0.1 nm) structure of the PH domain of PKBalpha complexed to Ins(1,3,4,5)P4, the head group of PtdIns(3,4,5)P3. Remarkably, in contrast to all other PH domains crystallized so far, our data suggest that binding of Ins(1,3,4,5)P4 to the PH domain of PKB, induces a large conformational change. This is characterized by marked changes in certain residues making up the phosphoinositide-binding site, formation of a short a-helix in variable loop 2, and a movement of variable loop 3 away from the lipid-binding site. Solution studies with CD also provided evidence of conformational changes taking place upon binding of Ins(1,3,4,5)P4 to the PH domain of PKB. Our data provides the first structural insight into the mechanism by which the interaction of PKB with PtdIns(3,4,5)P3/PtdIns(3,4)P2 induces conformational changes that could enable PKB to be activated by PDK1.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Blood Proteins / metabolism
  • Circular Dichroism
  • Crystallography, X-Ray
  • Inositol Phosphates / chemistry
  • Inositol Phosphates / metabolism
  • Models, Molecular
  • Molecular Conformation
  • Phosphatidylinositol Phosphates / chemistry*
  • Phosphatidylinositol Phosphates / metabolism
  • Phosphoproteins / metabolism
  • Protein Binding
  • Protein Conformation
  • Protein-Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / chemistry*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Sulfates / chemistry

Substances

  • Blood Proteins
  • Inositol Phosphates
  • Phosphatidylinositol Phosphates
  • Phosphoproteins
  • Proto-Oncogene Proteins
  • Sulfates
  • phosphatidylinositol 3,4,5-triphosphate
  • platelet protein P47
  • inositol-1,3,4,5-tetrakisphosphate
  • Protein-Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt

Associated data

  • PDB/1UNP
  • PDB/1UNQ
  • PDB/1UNR