Alkali ash material: a novel fly ash-based cement

Environ Sci Technol. 2003 Aug 1;37(15):3454-7. doi: 10.1021/es026317b.

Abstract

The United States generates 110 million t of coal ash annually. Approximately 70 million t of this coal ash is fly ash, of which 27% is recycled and the remaining 73% is landfilled. Disposal of such a huge quantity of ash poses a significant environmental problem. A new cementitious material has been developed, called alkali ash material (AAM), which is used to produce concrete for construction. AAM can be used to create a variety of concrete strengths and could revolutionize the concrete product manufacturing industry due to its economic advantage. AAM contains 40-95% Class F fly ash and is used as cement to bind sand, stone, and fibers creating concrete. AAM concrete has been tested for strength, durability, mechanical properties, and, most importantly, economic viability. AAM concrete is economically and technically viable for many construction applications. Some properties include rapid strength gain (90% of ultimate in 1 d), high ultimate strengths (110 MPa or 16,000 psi in 1 d), excellent acid resistance, and freeze-thaw durability. AAM's resistance to chemical attack, such as sulfuric (H2SO4), nitric (HNO3), hydrochloric (HCl), and organic acids, is far better than portland cement concrete. AAM is resistant to freeze-thaw attack based on ASTM C-666 specifications. Potential immediate applications of AAM are blocks, pipe, median barriers, sound barriers, and overlaying materials. Eventual markets are high strength construction products, bridge beams, prestressed members, concrete tanks, highway appurtenances, and other concrete products.

MeSH terms

  • Alkalies
  • Coal*
  • Conservation of Natural Resources*
  • Construction Materials*
  • Incineration
  • Materials Testing
  • Refuse Disposal*

Substances

  • Alkalies
  • Coal